Оценка минеральных ресурсов и запасов

Талицкого участка Верхнекамского месторождения калийно-магниевых солей 000 «Верхнекамская Калийная Компания»

Эффективная дата оценки: 01 января 2011 г.

ИТОГОВЫЙ (КРАТКИЙ) ОТЧЕТ

подготовлен для
000 «Верхнекамская Калийная Компания»
компанией
International Economic and Energy Consulting / ООО «Ай.И.И.Си»

ИТОГОВЫЙ (КРАТКИЙ) ОТЧЕТ

 ОЦЕНКА РЕСУРСОВ И ЗАІПАСОВ ПО КОДЕКСУ JORC 000 «Верхнекамская Калийная Компания»Подготовлен комланией
International Economic and Energy Consulting / OOO «Ай.И.И.Си»

для
ООО «Верхнекамская Калийная Компания»

IEEC офис вг. Mосква
Ул. Чаянова 22
125047 Москва, Россия
Тел: + 74992506717

Факс: +7 4992515962

Утвердили:

Директор IEEC

Aвгуст 2011 r.
Оглавление
СПИСОК ТАБЛИЦ 4
СПИСОК РИСУНКОВ 4
1 ВВЕДЕНИЕ 5
1.1 ВСТУПИТЕЛЬНАЯ ЧАСТЬ5
1.2 ЗАЯВЛЕНИЕ О КВАЛИФИКАЦИИ 5
РАБОЧАЯ ГРУППА ПРОЕКТА ИПОСЕЩЕНИЕ УЧАСТКА МЕСТОРОЖДЕНИЯ 5
1.3 РАСПОЛОЖЕНие МЕСТОРОЖДєНия 6
1.4 ГЕОлОГия 7
1.5 РесУРСЫ и ЗАПАСЫ 8
1.6 ГОРнЫе РАБоты 10
1.7 ПереработКа 11
1.8 ИКНФРАСТРУКТУРА 11
1.9 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ И РЕКУЛЬТИВАЦИЯ 11
1.10 ЧЕЛОВЕЧЕСКИЕ РЕСУРСЫ 12
1.11 ОцЕНКА ЭКОНОМИЧЕСКОЙ ЭФФЕКТИӨНОСТИ 12
2 ЗАПАСЫ И РЕСУРСЫ 13
2.1 РОССИЙСКАЯ СИСТЕМА УЧЕТА ЗАПАСОВ 13
2.2 МЕЖДУНАРОДНЫЕ СИСТЕМЫ КЛАССИФИКацИИ 13
2.3 СОПОСТАВЛЕНИЕ СИСТЕМ КЛАССИФИКАЦИИ РЕСУРСОВ И ЗАПАСОВ 15
2.4 ПОДСЧЕТ РЕСУРСОВ 15
2.5 РЕСУРСЫ JORC ТАЛИЦКОГО УЧАСТКА ВКМКС. 17

СПИСОК ТАБЛИЦ

ТАБЛ. 1-1 УТВЕРЖДЕННЫЕ ЗАПАСЫ КАЛИЙНО-МАГНИЕВЫХ СОЛЕЙ НА ТАЛИLНОМ УЧАСТКЕ (ПО СОСТОЯНИЮ НА 01.01.1969 Г.) 8
ТАБЛ. 1-2 ЗАПАСЫ КАЛИЙКО-МАПНИЕВЫХ СОЛЕЙ НА ТАЛИЦКОМ УЧАСТКЕ (НА 01.01.2007 г.) ... 9
ТАБл. 1-3 ЗапаСЫ ФОРМА 5 ГР (нА 01.01.2011 г.) ... 9
ТАБЛ. 2-1 ТРЕБОВАНИЯ К ПЛОТНОСТИ СЕТИ СКВАЖИН ДЛЯ РАЗЛИЧНЫХ КАТЕГОРИЙ ЗАПАСОВ И ПРОПНОЗНЫХ РЕСУРСОВ МЕСТОРОЖДЕНИЙ ПЕРВОЙ ГРУППЫ СЛОЖНОСТИ МЕТОДИЧЕСКИХ РЕНОМЕНДАЦИЙ ПО СОПОСТАВЛЕНИЮ РЕСУРСОВ CRIRSCO С РОССИЙСНОЙ КЛАССИФИКАЦИЕЙ ГКЗ16
ТАЕЛ. 2-2 ФАКТИЧЕСКАЯ ПЛОТНОСТЬ СЕТИ СКВАЖИН ДЛЯ РАЗВЕДКИ ТАЛИЦКОГО УЧАСТКА В 1968 Г. 16
ТАбл. 2-3 РесУРСЫ ПО КОдЕКСУ JORC в ГРаницАХ ЛицЕНЗИОнноГО УЧАСТКА 17
СПИСоК РИСУнКов
РИС. 1-1 ОБЗОРНАЯ КАРТА РАСПОЛОЖЕНИЯ УЧАСТКА ТАЛИЦККЙ̆ ВКМКС6

1 ВВЕДЕНИЕ

1.1 Вступительная часть

Данный отчет был выполнен компанией International Economic\&Energy Consulting (IEEC) по заказу компании 000 «Верхнекамская Калийная Компания» (далее - 000 «ВКК») с целью оценки ресурсов и запасов по стандартам кодекса JORC.

1.2 Заявление о квалификации

IMC Montan является независимой Международной консалтинговой группой компаний. B rруппу входят компании IMC Group Consulting Limited (Великобритания), DMT GmbH (「опм Consulting и 000 «Ай.И.И.Си» (Великобритания, Россия).
В сферу деятельности IMC Montan входят: подготовка Отчета Компетентного Лица, аудит ресурсов и оценка запасов горнодобывающих предприятий в соответствии с международной классификацией, техняческая, эономическая и экологическая оценка и экспертиза проектов, банковское ТЭО, разработка проектов в широком диапазоне инженерных и научных работ.

Более подробную информацию об IMC Montan можно получить на сайте www.imemontan.ru и на сайтах компаний группы.

Рабочая группа проекта и посещение участка месторождения

Компания IEEC выполнила оценку ресурсов и запасов с привлечением группы международных и российских экспертов. Каждый эксперт является штатным сотрудником или опытным ассоциированным партнером. Ниже приводится список экспертов.

Джон Бакарак	Директор проекта
Алексей Жура	Руководитель проекта
Рахимбек Кузембаев	Горный инженер
Нил Скотт	Геолог, компентентное лицо
Александр Покусаев	Геолог
Денис Тибилов	Экономист
Андрей Постолатьев	Инженер-обогатитель
Татьяна Ворон	Инженер-эколог

Группа экспертов IMC Montan, направленных в командировку, состояла из следующих специалистов: горного инженера, геолога, инженера-эколога, руководителя проекта и инженера-обогатителя.
Консультанты компании IMC Montan выражают признательность за плодотворное сотрудничество и эффективную помощь в подготовке данного отчета специалистам 000 «Верхнекамская Калийная Компания»: Спехову Л.М. - директору Пермского филиала 000 «ВКК», Мотовилову А.В. - техническому директору 000 «ВКК», Вяткину М.Н. - главному горняку 000 «ВКК», Янину В.Н. - заместителю директора Пермского филиала 000 «ВКК» и Голубеву Б.М.- главному геологу 000 «ВКК».

1.3 Расположение месторождения

Сырьевой базой 000 «ВКК» является Талицкий участок Верхнекамского месторождения калийно-магниевых солей в Пермском крае (ВКМКС).
Талицкий участок ВКМКС располагается в Усольском муниципальяом районе г. Березники, Пермской области в 18 км юго-восточнее города Березники, в восточной краевой полосе в южной части ВКМКС.

Рис. 1-1 0бзорная карта расположения участка Талицкий ВКМКС
С запада данный участок примыкает к границам горного отвода шахтного поля 2 -го Березниковского рудоуправления ОAO «Уралкалий», отрабатывающего запасы Дурыманского участка. С севера - к границам горного отвода шахтного поля 4 -го Березниковского рудоуправления ОАО «Уралкалий», отрабатывающего запасы БыгельскоТроицкого участка месторождения. С юга и востока Талицкий участок примыкает к границам подсчета запасов калийно-магниевых солей (категория C_{2}), учитываемых государственным балансом, как «Остальная площадь Верхнекамского месторождения калийных солей».

В морфологическом отношении территория участка представляет собой всхолмленную равнину, разделенную долинами речек, ручьев и оврагов. Абсолютные отметки рельефа меняются от 123,5 м на северо-западе участка в долине р. Зырянки до 242,22 м.

Главным водотоком является р. Кама, протекающая в западной части месторождения. До широты г. Соликамск сказывается влияние подпора Камского водохранилища. Основная гидрографическан сеть района представлена, кроме Камы, реками Яйва, Язьва, Колынва, Глухая Вильва, Боровая, Усолка, Вишерка, Зырянка и их притоками. Для района характерна значительная заболоченность.
Расположение Верхнекамского региона на стыке Русской равнины с предгорьями Урала определяет умеренно континентальный характер климата. На территории хорошо выражены сезонные изменения характеристик климата: зима - холодная и продолжительная, с устойчивыми морозами, а лето - теплое и дождливое.
Снеговой покров держится с ноября по апрель. Период с температурами воздуха ниже $0^{\circ} \mathrm{C}$

Более 60% части площади района месторождения покрыта лесом с преимущественным развитием хвойных пород.
Население сосредоточено, главным образом, в городах Березники, Соликамск, Усолье. Остальное население проживает в поселках городского типа (Орел, Яйва) и сельского типа. Кроме этого, имеется около 30 деревень с населением от трех до двухсот человек.
Промышленность, в основном, связана с освоением ВКМКС. Оно разрабатывается предприятиями ОАО «Уралкалий» (г. Березники) и ОАО «Сильвинит» (г. Соликамск). В r. Березники находится ряд крупных предприятий, таких как ОАО «Бератон», ОАО «Ависма», ОАО «Азот», ОАО «Березниковкий содовый завод», в г. Соликамск - ОАО «Соликамский магниевый завод», OAO «Соликамский целлюлозно-бумажный комбинат». Кроме того, в районе имеется ряд других мелких предприятий: заводы бытовой химии, электроосветительной аппаратуры, ЖБИ, крупнопанельного домостроения, силикатного кирпича, швейная фабрика и др. Bсе предприятия обеспечиваются электроэнергией из Уральской энергосистемы, в которую включены местные ТЭЦ.
Основными транспортными артериями являются р. Кама, железнодорожная ветка Чусовская-Соликамск и шоссе Пермь-Соликамск-Красновишерск, по которым осуществляется связь с краевым центром. Кроме этих дорог, существует ряд местных, как асфальтированных, так и улучшенных: Соликамск-Половодово, Соликамск-Сим, СоликамскТюлькино, Березники-Усолье. Имеется разветвленная сеть грунтовых дорог местного значения. Дороги местного значения во время распутицы труднопроходимые.

1.4 Геология

000 «Верхнекамская Калийная Компания» имеет лицензию на право разведки и добычи калийно-магниевых солей на Талицком участке Верхнекамского месторождения калийномагниевых солей в Пермском крае, зарегистрированную 06.05.2008 г. в Федеральном агентстве по недропользованию МПР России под № 5391/ПЕМ 14465 ТЭ. Срок окончания действия лицензии 15.04 .2028 г.

Геологоразведка и база данных

Геологоразведка участка была проведена в 1968-1969 гг. Запасы утверждены в ГКЗ СССР в 1969 г. В 2009-2010 rr. проведена доразведка участка по уточнению его геологического строения согласно лицензионному соглашению, являющемуся Приложением к лицензии ПЕМ 14465 ТЭ. Результаты этих работ изложены в отчете, который находится в стадии завершения. Планируется защита ТЭ0 кондиций и отчета по запасам в IV кв. 2011 г. и в І кв. 2012 г. соответственно. При детальных разведочных работах в 1968-1969 гг. на площади участка пробурено 28 разведочных, 4 гидрогеологические и 11 "структурных» скважин. Кроме того, на стадиях поисковой и предварительной разведок Талицкого участка, а также

при разведке смежных площадей (Дурыманского и Быгельско-Троицкого участков) было пробурено 11 скважин.
Плотность разведочной сети для пласта Kpll характеризуется следующими показателями: для категории А - 0,57 кв. км $/ 1$ скв; для категории В $-0,71$ кв. км $/ 1$ скв; для категории $\mathrm{C}_{1}-2,2$ кө. км $/ 1$ скв.
Из скважин отобрано 983 керновые пробы, в том числе 305 проб сильвинита, 69 проб карналлитовой породы, 505 проб каменной соли и 104 пробы соляных глин. Пробы проанализированы на $\mathrm{K}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Cl}, \mathrm{SO}_{4}, \mathrm{Br}$ и н.O.

1.5 Ресурсы и запасы

утверждены и поставлены на государственный баланс запасы, приведенные в Табл. 1-1.
Табл. 1-1 Утвержденные запасы калийно-магниевых солей на Талицком участке (по состоянию на 01.01.1969 г.)

Категории	Запасы, тыс. т					
	Природных солей	KCI	$\mathrm{K}_{2} \mathrm{O}$	MgCl_{2}	MgO	Br
Балансовые запасы						
Сильвинит						
A	86930	30071	18999			38
B	175016	62307	39365			84
C_{1}	461631	161183	101834			190
$\mathrm{A}+\mathrm{B}+\mathrm{C}_{1}$	723577	253561	160198			312
C_{2}	27315	9874	6238			10
Смешанные клористые соли						
C_{1}	1868	552	349	135	57	1
Забалансовые запасы						
Сильвинит						
A	9540	3781	2389			
B	42287	16985	10731			
C_{1}	875533	229830	145210			
$\mathrm{A}+\mathrm{B}+\mathrm{C}_{1}$	927360	250526	158330			
C_{2}	8718	2707	1710			
Карналлитовая порода						
C_{2}	705119	101879	64366	76614	32432	

В 2004-2005 гг. ОАО «Уралкалий» выполнил оперативную переоценку запасов в контурах горного отвода Талицкого участка ВКМКС. Это было вызвано необходимостью исключить из запасов Талицкого участка запасы горных отводов смежных участков, перекрывающих часть лицензионного участка. Таким образом, по состоянию на 01.01.2007 г. запасы калийно-магниевых солей утверждены в следующих количествах, приведенных в Табл. 1-2:

Табл. 1-2 Запасы калийно-магниевых солей на Талицком участке (на 01.01.2007 г.)

Категории	Запасы, тыс. т					
	Природных солей	KCI	$\mathrm{K}_{2} \mathrm{O}$	MgCl_{2}	MgO	Br
Балансовые запасы						
Сильвинит						
A	86930	30071	18999			38
8	163469	58186	36761			79
C_{1}	431146	150317	94967			176
$A+B+C_{1}$	681545	238574	150727			293
C_{2}	27315	9875	6238			10
Смешанные соли						
C	1868	552	349	135	57	1
Забалансовые эаласы						
Сильвинит						
A	9540	3781	2389			
8	42287	16985	10731			
C_{1}	849648	223240	141044			
$A+B+C_{1}$	901475	244006	154164			
C_{2}	8718	2707	1710			
Карналлитовая порода						
C_{2}	668853	96618	61042	72758	30799	

К забалансовым запасам отнесены запасы сильвинита и карналлита пласта В из-за малой мощности пласта и низкого содержания MgCl_{2}.
Запасы в пластах Г, Д, Е, Ж, З, И, К отнесены к забалансовым из-за малой мощности или другой технической причине (входят в состав водозащитных отложений).

Поскольку запасы доразведки Талицкого участка ещё не утверждены, то на балансе 000 «ВКК» на 01.01.2011 г. согласно форме 5ГР двнжения и учета запасов в ГКЗ Роснедра в настоящее время числится объем запасов согласно Табл. 1-3:

Табл. 1-3 Запасы Форма 5ГР (на 01.01.2011 г.)

Категории	Запасы, тыс. ${ }^{\text {¢ }}$			
	Природных солей	$\mathrm{K}_{2} \mathrm{O}$	KCI	MgCl 2
Карналлитовая порода				
C_{2}	668853	61042	96618	72758

Проведя анализ предоставленных обширных материалов, эксперты IMC Montan считают, что разведка Талицкого участка Верхнекамского месторождения в 1968 г. была произведена на професснональном уровне, результаты проведенных работ надежны и, благодаря этому, данные разведки пригодны для использования в оценке ресурсов.

Компания IMC Montan не производила официальной классификации запасов этого объекта в соответствии с западными системами классификации, поскольку эта работа требует большего времени и подробного анализа результатов разведки, методов оценки и техникоэкономических факторов, используемых для оценки запасов месторождения. Однако запасы категорий A, B, C_{1} и C_{2} в проектных контурах могут соответствовать Измеренным и Указанным ресурсам западных систем классификации.

Учитывая изученность месторождения в процессе детальной разведки, каротажа, к категориям Измеренные и Указанные могут быть отнесены ресурсы, залегающие до проектной отработки 350 м. Плотность разведочных скважин до указанных отметок достаточна для отнесения ресурсов к категориям Измеренные и Указанные, равно как и полнота доступных для изучения материалов.

Перевод балансовых запасов ГКЗ в ресурсы по Кодексу JORC, произведенный экспертами IMC Montan, предполагает, что запасы категорин $A+B+C_{1}$ соответствуют Измеренным ресурсам, а запасы категории C_{2} соответствуют Указанным ресурсам. Забалансовые запасы соответствуют Предполагаемым ресурсам, поскольку не могут быть отработаны из-за сложных горнотехнических условий по данньм оперативной переоценки запасов, проведенной в 2004-2005 гг.

1.6 Горные работы

Технические решения разработаны на стадии предпроектных расчетов. На месторождении в 2011 г. будет завершен отчет и проведена защита ТЭО кондиций, изучены минерологотехнологические свойства руд и планируется приступить к выполнению технического проекта отработки месторождения.

Горнотехнические условия залегания руд на Талицком участке не сильно отличаются от действующих на ВКМКС других рудников и позволяют отработать руду подземным способом.

Мощность ВЗT в пределах участка отработки меняется от $40,6 \mathrm{~m}$ (пласт АБ) до 119 m (пласт Kplll а+б). Указанная мощность B3T соответствует различным нормативным требованиям, разработанным для существующих рудников ВКМКС.

В целом принятые технические решения отвечают требованиям времени и учитывают большой опыт действующих соседних рудников по добыче калийной соли.

Принятые в технических решениях уровни потерь и разубоживакия корректны. В то же время более тщательная проработка возможности селективной отработки пласта КрIII а+б, а также других пластов, в том числе маломощных, является резервом для повышения извлечения при подземной добыче и решающим фактором для повышения содержания калийной соли в сырой руде и снижения нерастворимого остатка (Н.O.) в руде.
Учитывая, что вредные факторы аналогичны существующим калийным рудникам, то и мероприятия по безопасности будут приняты с учетом существующего опыта. Также

планируется применять новейшие технологии и активно испольэовать мировой опыт работы в калийной отрасли, что позволит свести данные риски к минимуму.
В технических решениях разработаны параметры гидравлической закладки в отработанное пространство солеотходов и шламов. Мощность закладочного комплекса составляет 2,5 млн. т/год солеотходов по твердому ($63,6 \%$ от образующихся солеотходов) и 300 тыс. т/год шламов (49,8\%).
Уровень размещения отходов производства под землей выше, чем на действующих рудниках, что положительно будет влиять на снижение вредного воздействия на окружающую среду.

1.7 Переработка

Для обогащения сильвинитовой руды на обогатительной фабрике Талицкого ГОКа планируется применение флотационного метода.

Для оценки характеристик руды изучены гранулометрический, химический и минералогический состав. Были проведены также исследования вещественного состава солевых и несолевых минералов. Для определения показателей извлечения полезного компонента и качества концентрата проведены технологические исследования лабораторные флотоопыты, обесшламливание руды методами оттирки и дезинтеграции. На основе проведенных исследований была предложена схема переработки, при использовании которой достигаются удовлетворительные результаты обесшламливания и флотации руды с высоким содержанием нерастворимого остатка.

1.8 Инфраструктура

Объекты Талицкого ГОКа предусматривается разместить в центральной части Пермского края в 14,5 км от r. Березняки и 6 км от промплощадки БКПРУ-2.
Выбранное место промплощадки находится на расстоянии 1,5 км от пос. Шиши и пос. Железнодорожный.

Транспортная сеть представлена автомобильными дорогами районного, областного и регионального значения; магистральной железной дорогой Соликамск-Березники-Пермь Свердловской железной дороги; водным транспортом Камского водохранилища.
По южной границе промплощадки проходит ЛЭП-110 кВ, на расстоянии 0,5 км от няжнего угла восточной границы - ЛЗП-500 кВ.
Планируется строительство подъездной автодороги до промплощадки протяженностью 9 км, из них: 3,5 км - новая дорога, 5,5 км - реконструируемая дорога, и строительство подъездной железной дороги от ст. Талицкая до ст. Березяики-Сортировочная длиной 4 км.

1.9 Охрана окружающей среды и рекультивация

Территория Талицкого участка недр Верхнекамского месторождения калийно-магниевых солей отличается низкой антропогенной нарушенностью.
Ограничивающими условиями для размещения производственных объектов 000 «Верхнекамская Калийная Компания» на рассматриваемой территории будут являться охранные зоны природных объектов и инженерных сооружений.
Негативные воздействия на окружающую среду при реализации намеченной деятельности по добыче калийных солей обусловлены образованием отходов производства и будут проявляться в изъятии земельных ресурсов под объекты размещения отходов, вырубки лесов, частичных изменений ландшафта.

На данной стадии работ предприятием разработаны основные технические решения, предусматривающие мероприятия по снижению загрязнения почв и водных объектов, снижению воздействия на растительный мир, предотвращению образования провалов, уменьшению площади отчуждаемых земель.

Согласно требованиям нормативных, лицензионных и договорных документов, в целях восстановления ценности нарушенных земель предприятием должны осуществляться рекультивационные работы. Объектами рекультивации являются: шламохранилище и участок промплощадки. Рекультивация солеотвала не рассматривалась, так как он подлежит дальнейшей разработке, как техногенное месторождение галитов.

1.10 Человеческие ресурсы

Численность персонала ГОКа при выходе на проектную мощность составит около 3000-3500 чел. с учетом вспомогательных работ и обслуживающих организаций. Источниками трудовых ресурсов планируются ближайшие города: Березники, Соликамск, Кизел. В регионе имеются необходимые центры подготовки для горно-химической отрасли: Пермский Государственный Техжический Университет, Березниковсккй филиал ПГТУ, Уральский Государственный Горный Университет (г. Екатеринбург) и др.

1.11 Оценка экономической эффективности

Исходя из текущей стадии реализации проекта (ТЭО постоянных разведочных кондиций находится в стадия согласования и утверждения), консультантами IMC Montan проведена оценка ресурсов Талицкого участка ВКМКС. Экономическая оценка вроведена для предварительного анализа эффективности отработки ресурсов участка.
Предварительная оценка ресурсов калийных солей Талицкого участка ВКМКС показала экономическую целесообразность дальнейших работ по освоению участка в соответствии с утвержденными в компании сроками.

2 ЗАПАСЫ И РЕСУРСЫ

2.1 Российская система учета запасов

Российская система классификации запасов базируется на тех же принципах, что были приняты в бывшем СССР. Принципы, лежащие в основе российской системы, схожи с принципами, используемыми в других странах, особенно в Польше и Китае.

Система основана на двух осях координат, абсцисса справа налево показывает повышение степени изученности запасов, а ордината снизу вверх показывает повышение возможности экономически эффективного использования запасов.
Российское горное законодательство определяет месторождение полезных ископаемых как природную или искусственную концентрацию полезного ископаемого, эксплуатация которого может принести экономическую выгоду. Термин «запасы» включают «выявленное количество полезного ископаемого, часть которого может быть экономически эффективно извлечена».
По этой системе минеральные ресурсы подразделяются на следующие категории: Разведанные и Предварительно оцененные запасы, а также Прогнозные ресурсы по абсциссе и Экономические (Балансовые) и Потенциально экономические (Забалансовые) по оси ординат.

2.2 Международные системы классификации

В мировой горнодобывающей промышленности существует несколько систем классификацни минеральных запасов. На сегодняшний день различные регулирующие органы добились согласования этих систем и обязали акционерные компании публиковать любые публично-правовые документы в соответствии с установленными стандартами. Основными классификационными стандартами являются:

- CШA
- Канада
- Австралия
- Великобритания, Ирландия
- Южная Африка

USGS Circular 831 (циркуляр)
OSC Instrument 43-101 (руководство)
JORC Code (система)
IMMM Reporting Code (система классификации)
SAMREC Reporting Code (система классификации)

Во всех системах принята общая терминология и номенклатура, и во всех системах признается разница между рудными ресурсами и запасами. Перевод из категории ресурсов в

категорию запасов требует учета и применения «модификаторов», которые включают в себя горные, металлургические, экономические, рыночные, правовые, экологические, социальные и правительственные факторы. Ресурсы определяются геологически. Они переводятся в категорию запасов при учете модификаторов, особенно технических и экономических. Для разных товаров горного сектора существуют строгие принципы определения качества и учета данных.

В международной практике все чаще в качестве отраслевого стандарта учета запасов используется Австралийский Кодекс JORC.

Кодекс JORC определяет Измеренные, Указанные и Iредполагаемые ресурсы следующим образом: во всех трех случаях должна иметься перспектива их окончательной экономически

Измеренные ресурсы

Измеренные минеральные ресурсы - часть минеральных ресурсов, колнчество, удельный вес, форму, физические свойства, содержание полезных компонентов и минералов которых можно оценить с высокой степенью достоверности.

Указанные ресурсы

Указанные минеральные ресурсы - часть минеральных ресурсов, количество, удельный вес, форму, физические свойства, содержание полезных компонентов и минералов которых можно оценить с разумной степенью достоверности.

Предполагаемые ресурсы

Предполагаемые минеральные ресурсы - часть минеральных ресурсов, количество, качество щ содержание минералов которых можно оценить с низкой степенью достоверности.

Подтвержденные и вероятные запасы

Подтвержденные (Proved) запасы руды - экономически выгодно извлекаемая часть Измеренных минеральных ресурсов, а вероятные (Probable) запасы руды - экономически выгодно извлекаемая часть Указанных минеральных ресурсов. В соответствия с Кодексом JORC подтвержденные (Proved) и вероятные (Probable) запасы должны включать поправки на разубоживание и потери.

Финансовый раздел

Классификация минеральных ресурсов по Кодексу JORC главным образом зависит от достоверности геологической разведки месторождения. Перевод минеральных ресурсов в запасы впоследствии проводится на основании ряда модифицирующих факторов, включая горные (реалистичные предполагаемые методы разработки), металлургические, экономическне, маркетинговые, юридические, экологические, социальные и страновые факторы.

2.3 Сопоставление систем классификации ресурсов и запасов

Международный Комитет CRIRSCO (Комитет по стандартам подсчета минеральных запасов), а также, представители ГКЗ в сентябре 2010 г. утвердили единую процедуру перевода запасов и прогнозных ресурсов по Российской системе в формат международной системы. Система классификации CRIRSCO во многом схожа с системой JORC.

			Российские к	гории запасов	прогнозн	ресурсов	
	ия по		Степень д	'альности геол	ической	едки	
	го строения	A	B	C_{1}	C_{2}	P_{1}	P_{2}
	I	Иэмеренные	Измеренныө	Измеренные	Указаяные	Предполагаемые	
$\begin{aligned} & \overline{\mathrm{L}} \\ & \stackrel{0}{0} \\ & \stackrel{\mathrm{x}}{\mathrm{E}} \end{aligned}$	II		Измеренные	Измеренные	Указанные	Предполагаемые	
	III			Измеренные	Указан- ные	Предполагаемые	
E $\stackrel{y}{\circ}$	IV			Указанные	Указанные	Предполагаемые	He выделяют ся

2.4 Подсчет ресурсов

В настоящей работе IMC Montan рассматривает методологию, которая использовалась для оценки ресурсов Талицкого участка месторождения калийных солей в соответствии с принципами Кодекса JORC издания 2004 r .

Эксперты IMC Montan не производили переоценку ресурсов калийных солей, а осуществляли проверку и перевод существующих запасов ГКЗ в ресурсы и запасы согласно требованиям Кодекса JORC (на основании данных 000 «ВКК»).

Требования к плотности сетки скважин, принятые для оценки запасов

Согласно Методических рекомендаций ГКЗ по применению классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, запасы и прогнозные ресурсы месторождений минеральных солей подразделяются на группы по сложности геологического строения и степени разведанности.
Талицкий участок ВКМКС относится к 1 группе сложности - участок крупного месторождения, характеризующегося пластовыми залежами, выдержанными по мощности и качеству солей.

Требования к плотности сети скважин для месторождений 1 -ой группы сложнасти в целях отнесения их к определенной категории балансовых запасов приведены в Табл. 2-1.

Табл. 2-1 Требования к плотности сети скважин для различных категорий запасов и прогнозных ресурсов месторождений первой группы сложности Методических рекомендаций по сопоставлению ресурсов CRIRSCO с российской классификацией ГК3

Балансовые запасы	A	Плотность сети $1000 \mathrm{~m} \times 1200 \mathrm{~m}$
	B	Плотность сети скважин $1200 \mathrm{~m} \times 1600 \mathrm{~m}$
	C_{1}	Плотность сети $1600 \mathrm{~m} \times 2400 \mathrm{M}$
	C_{2}	Плотность сети разрежается в 2-4 раза по отношению н сети категории C_{1}

Фактическая плотность сети скважин для разведки Талицкого участка по категориям запасов приведена в Табл. 2-2.

Балансовые запасы	\mathbf{A}	Плотность сети $1000 \mathrm{~m} \times 1200 \mathrm{~m}$
	B	Плотность сети скважин $1000 \mathrm{~m} \times 2400 \mathrm{~m}$
	C_{1}	Плотность сети $1300 \mathrm{~m} \times 3900 \mathrm{~m}$
	C_{2}	Плотность сети $1600 \mathrm{~m} \times 3900 \mathrm{~m}$

Полнота базы данных

Эксперты IMC Montan произвели анализ и проверку данных по всем 38 скважинам участка и не выявили расхождений в подсчете средних содержаний по скважинам. Не было выявлено очевидных аномальных значений и в базе данных, поэтому она оценивается как надежная.

Геологическая интерпретация данных

Достоверность геологической интерпретации данных месторождения высокая. Показана выдержанность горизонтов калийных солей, а также химического и минералогического состава основного пласта (KрІІ). Данное месторождение оконтурено 39 скважинами и достаточно изучено. Эксперты IMC Montan считают, что геологические данные интерпретированы верно и соответствуют уровню достоверности Измеренных и Указанных ресурсов.

Качественная характеристика пластов

Ресурсы Талицкого участка ВКМКС выявлены на площади 69,6 км². Выделяются балансовые и забалансовые запасы пластов, представляющих промышленный интерес.
Основными типами полезного ископаемого на Талицком участке являются сильвинит, а таюже смешанные соли на сравнительно небольшой площади. К балансовым запасам отнесены запасы сильвинита пластов КрІІІа-б, КрІІ и смешанных солей пласта АБ.

К забалансовым отнесены запасы сильвинита пласта КрІ из-за малой мощности пласта \{средняя мощность по блокам колеблется от 0,58 м до 1,04 м\}. Запасы карналлитовой породы пласта B отнесены к забалансовым из-эа низкого содержания MgCl_{2} (среднее - $15,42 \%$). Запасы в пластах Г, Д, Е, Ж, З, И, К отнесены к забалансовым из-за малой мощности или другой технической причине (входят в состав водозащитных отложений).
Средний химический состав сильвинита в пласте КрІІа-в (\%, $\%$): $\mathrm{KCl}-25,29 ; \mathrm{MgCl}_{2}-0,29$; $\mathrm{NaCl}-66,02 ; \mathrm{CaSO}_{4}-1,85 ; \mathrm{H} . \mathrm{O} .-5,67 ; \mathrm{H}_{2} \mathrm{O}-0,72 ; \mathrm{Br}-0,034$.

Средний химический состав сильвинита в пласте Kpll (\%,\%): $\mathrm{KCl}-39,28 ; \mathrm{MgCl}_{2}-0,24$; $\mathrm{NaCl}-54,0 ; \mathrm{CaSO}_{4}-1,85 ; \mathrm{H} . \mathrm{O}-4,1 ; \mathrm{H}_{2} \mathrm{O}-0,52 ; \mathrm{Br}-0,048$.

Средний химический состав сильвинита в пласте АБ (\%,\%): $\mathrm{KCl}-44,94 ; \mathrm{MgCl}_{2}-0,30$; $\mathrm{NaCl}-48,54 ; \mathrm{CaSO}_{4}-1,40 ; \mathrm{H.O}-3,92 ; \mathrm{H}_{2} \mathrm{O}-0,98 ; \mathrm{Br}-0,034$.
Средний химический состав смешанных солей в пласте АБ (\%,\%): $\mathrm{KCl}-29,53 ; \mathrm{MgCl}_{2}-7,19$; $\mathrm{NaCl}-45,76 ; \mathrm{CaSO}_{4}-1,35 ; \mathrm{H} . \mathrm{O} .-6,93 ; \mathrm{H}_{2} \mathrm{O}-9,22 ; \mathrm{Br}-0,075$.

2.5 Ресурсы JORC Талицкого участка ВКМКС

Табл. 2-3 Ресурсы по Кодексу JORC в границах лицензионного участка

Измеренные (тыс. т)				
Виды солей	соль	$\mathrm{K}_{2} \mathrm{O}$	$\mathbf{K C l}$	MgCl_{2}
Сильвинит	681545	150727	238574	0

Указанные (тыс. т)					
Сильвинит	27315	6238	9875	0	
Предполагдемые (тыс. т)					
Сильеинит	910193	155874	246713	0	
Карналлитовая порода	668853	61042	96618	72758	

Эксперты IMC Montan считают, что, исходя из геологической интерпретации, целостности базы данных, методов подсчета, используемых кондиций, допущений по добыче и обогащению и объемному весу, которые используются для подсчета категорий Измеренных и Указанных ресурсов, ресурсы подсчитаны достаточно надежно.

Эксперты IMC Montan считают, что ТЭО проекта 1960 г. выполнено с уровнем погрешности предварительного ТЭО, но на уровне, недостаточном для технически выполнимого и экономически эффективного планирования горных работ, поскольку не все соответствующие модифицирующие факторы современного уровня учтены, Поэтому на данном этале оценка запасов по JORC не производится.
После утверждения результатов дополнительной разведки в Госорганах (по предварительным данным возможный прирост балансовых запасов на участке составит до 100 млн. т за счет вовлечения в отработку забалансовых запасов, ранее считавшихся некондиционными), утверждения проекта горных работ с учетом современных экономических требований ресурсы JORC могут быть переведены в запасы.

